Modulhandbuch

Höhere Mathematik

Empf. Vorkenntnisse

Grundkenntnisse in:

  • Differential- und Integralrechnung von einer und mehreren Variablen

  • Vektorrechnung,

  • Komplexe Zahlen

  • Fourierreihen

  • Lineare Algebra

Lehrform Vorlesung
Lernziele
  • Sie verfügen über ein vertieftes theoretisches und empirisches Wissens über die Höhere Mathematik
  • Sie kennen Sinn, Zweck und Grenzen numerische Verfahren
  • Sie können geeignete numerische Verfahren auswählen

 

Dauer 1 Semester
SWS 4.0
Aufwand
  • Lehrveranstaltung:60 h
  • Selbststudium/
    Gruppenarbeit:90 h

  • Workload:150 h
Leistungspunkte und Noten

5 CP

ECTS 5.0
Voraussetzungen für Vergabe von LP

Klausur K120

Modulverantw.

Prof. Dr. Christoph Nachtigall

Max. Teilnehmer 0
Häufigkeit jedes Jahr (SS)
Verwendbarkeit

Master-Studiengänge EIM und EI-BB

Veranstaltungen Höhere Mathematik
Art Vorlesung
Nr. E+I2201
SWS 2.0
Lerninhalt

Vektoranalysis
- Skalare Felder, Vektorfelder, Differentialoperatoren
- Vektorrechnung in Kugel- und Zylinderkoordinaten
- Differentialoperatoren in Kugel- und Zylinderkoordinaten
- Linien- und Oberflächen- und Volumenintegrale im Raum
- Die Integralsätze (Green, Gauß, Stokes)
- Die Maxwellschen Gleichungen und ihre physikalische Bedeutung
- Lösungen der Maxwellschen Gleichungen

 

Literatur

Vorlesungsscript
Hoffmann, A., Marx, B., Vogt, W., Mathematik für Ingeniere, Vol. 2. Pearson, 2008
Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Vol. 2. Vieweg, 2001
Papula, L., Mathematik für Ingenieure und Naturwissenschaftler, Vol. 3. Vieweg, 2008Weltner, K., Wiesner, H., et al., Mathematik für Physiker, Band 2. Springer, 2006

 

Numerische Methoden
Art Vorlesung
Nr. E+I2202
SWS 2.0
Lerninhalt

1 Grundbegriffe und prinzipielle Vorgehensweise

2 Numerische Differentiation und Integration
2.1 Numerische Differentiation
2.2 Numerische Integration

3 Nichtlineare Gleichungen mit einer unabhängigen Variablen
3.1 Aufgabenstellung
3.2 Bisektionsverfahren
3.3 Newton-Verfahren
3.4 Sekanten-Verfahren
3.5 Ausweitung des Konvergenzbereichs lokal konvergenter Verfahren
3.5.1 Gedämpftes Newton-Verfahren
3.5.2 Kombination von Verfahren
3.6 Nullstellenbestimmung von reellen Polynomen

4 Nichtlineare Gleichungen mit mehreren unabhängigen Variablen
4.1 Aufgabenstellung
4.2 Newton-Verfahren
4.3 Quasi-Newton-Verfahren

5 Minimumsuche bei Funktionen mit einer unabhängigen Variable
5.1 Aufgabenstellung und prinzipielle Vorgehensweise
5.2 Bisektionsverfahren
5.3 Newton-Verfahren

6 Minimumsuche bei Funktionen mit mehreren unabhängigen Variablen
6.1 Aufgabenstellung und prinzipielle Vorgehensweise
6.2 Gauß-Seidel-Verfahren
6.3 Rosenbrock-Verfahren
6.4 Suche in negativer Gradientenrichtung
6.5 Newton-Verfahren
6.6 Fletcher-Reeves-Verfahren
6.7 Quasi-Newton-Verfahren
6.8 Minimumsuche mit Nebenbedingungen
6.8.1 Verwendung von Lagrange-Faktoren
6.8.2 Verwendung von Straffunktionen
6.9 Methode der kleinsten Quadrate als Spezialfall einer mehrdimensionalen Minimumsuche
6.9.1 Direkte Lösung
6.9.2 Update-Gleichungen

7 Eigenwerte und Eigenvektoren einer Matrix
7.1 Aufgabenstellung
7.2 Grundlegende Zusammenhänge zwischen einer quadratischen Matrix und ihren Eigenwerten und Eigenvektoren
7.3 Eigenvektorberechnung
7.3.1 Direkte Methode
7.3.2 Potenzmethode
7.3.3 Inverse Potenzmethode
7.3.4 Deflationstechnik

8 Gewöhnliche Differentialgleichungen
8.1 Aufgabenstellung
8.2 Explizite numerische Integrationsverfahren
8.2.1 Euler-Verfahren
8.2.2 Modifiziertes Euler-Verfahren
8.2.3 Runge-Kutta-Verfahren
8.2.4 Schrittweitensteuerung
8.2.5 Mehrschrittverfahren
8.3 Numerische Stabilität von Einschrittverfahren

 

Literatur

Engeln-Müllges, G., Niederdrenk, K., Wodicka, R., Numerik-Algorithmen, Springer, 10. Auflage, 2011

 


← Zurück Speichern als Docx