Module Guide

Automation Systems

Teaching methods Lecture/lab
Duration 1 Semester
Hours per week 6.0
Overview
  • Classes:90 h
  • Individual/
    Group work:90 h

  • Workload:18 0 h
ECTS 6.0
Max. participants 0
Recommended semester 6
Frequency Annually (ss)
Lectures Automatisierungssysteme
Type Lecture
Nr. E+I251
Hours per week 4.0
Lecture contents

1. Introduction to automation systems
    - Definitions
    - Application areas and automation objects
    - Design goals in automation
2. Sensors and actuators in automation
3. Control methods
    - Difference of feedforward control and feedback control
    - The programming standard DIN EN 61131-3
    - Logic operation functions
    - Logic operation controls
    - Sequence controls
    - Alternative descriptions of sequence controls (GRAFCET, petrinets, automata)
4. Automation computers and systems
    - Programmable logic controllers (PLC)
    - Distributed control sytems (DCS)
5. Industrial communication
    - Fieldbuses (AS-interface, Profibus)
    - Ethernet TCP / IP
    - Industrial Ethernet (ProfiNet, SercosIII, EtherCAT)
    - Intelligent point-to-point connections (IO-Link, HART protocol)
6. Manufacturing systems
    - computerized numeric controls (CNC)
    - industrial robots

Literature

Becker, N., Automatisierungstechnik, 2. Auflage, Würzburg, Vogel Business Media, 2014
Langmann, R., Taschenbuch der Automatisierung, 2. Auflage, München, Fachbuchverl. Leipzig Verlag, 2010

Labor Automatisierungssysteme
Type Lab
Nr. E+I252
Hours per week 2.0
Lecture contents

- Serial communication interfaces exemplified by V.24 / TTY interface
- SIMATIC S7 and visualization with WIN CC
- control of a process tank
- configuration of an AC motor system via ProfiNet
- distributed control systems PCS 7

Literature

Detailed laboratory instructions. HS printing


Bachelor's Thesis

Teaching methods Thesis/seminar
Duration 1 Semester
Hours per week 2.0
Overview
  • Classes:0 h
  • Individual/
    Group work:420 h

  • Workload:420 h
ECTS 14.0
Max. participants 0
Recommended semester 7
Frequency Annually (ws)
Lectures Bachelor-Thesis
Type Thesis
Nr. E+I0702
Hours per week 0.0
Kolloquium
Type Seminar
Nr. E+I0703
Hours per week 2.0

Circuit Design

Teaching methods Lecture/lab
Duration 2 Semester
Hours per week 10.0
Overview
  • Classes:150 h
  • Individual/
    Group work:150 h

  • Workload:300 h
ECTS 10.0
Max. participants 0
Recommended semester 3
Frequency Annually (ws)
Lectures Digitale Schaltungstechnik II
Type Lecture
Nr. E+I223
Hours per week 2.0
Analoge Schaltungstechnik II
Type Lecture
Nr. E+I222
Hours per week 2.0
Labor Schaltungstechnik
Type Lab
Nr. E+I224
Hours per week 2.0
Digitale Schaltungstechnik I
Type Lecture
Nr. E+I221
Hours per week 2.0
Analoge Schaltungstechnik I
Type Lecture
Nr. E+I220
Hours per week 2.0

Control Engineering

Teaching methods Lecture/lab
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 4
Frequency Annually (ws)
Lectures Labor Regelungstechnik
Type Lecture/lab
Nr. E+I255
Hours per week 2.0
Lecture contents

• measuring the frequency response (Bode diagram, Nyquist diagram)
• bang-bang controllers
• design of PID controllers in continuous-time as well as discrete-time
• system modelling, controller design and simulation with Matlab Simulink
• model based controller design and automatic code generation for embedded systems (rapid control prototyping)

Literature

Laborumdrucke, Hochschule Offenburg
Föllinger, O., Regelungstechnik: Einführung in die Methoden und ihre Anwendung, 11. Auflage, Berlin, Offenbach, VDE Verlag, 2013

Regelungstechnik II
Type Lecture
Nr. E+I253
Hours per week 2.0
Lecture contents

- Analysis of the behaviour of plants and control-loops using the poles and zeros of transfer functions
- Algebraic stability criterions
- Simplification of the plant model
- Algebraic controller design for standard controllers
- Structural methods such as cascade control, pilot control and disturbance rejection to improve the control loop behaviour

 

Literature

Föllinger, O., Regelungstechnik: Einführung in die Methoden und ihre Anwendung, 13. Auflage, Berlin, Offenbach, VDE Verlag, 2013
Lunze, J., Regelungstechnik 1, 10. Auflage, Berlin, Heidelberg, New York, Springer-Verlag, 2014


Electives

Teaching methods Lecture
Duration 1 Semester
Hours per week 8.0
Overview
  • Classes:120 h
  • Individual/
    Group work:120 h

  • Workload:240 h
ECTS 8.0
Max. participants 0
Recommended semester 6
Frequency Annually (ss)
Lectures Wahlpflichtfächer
Type Lecture
Nr. E+I0704
Hours per week 8.0

Electrical Drives I

Teaching methods Lecture
Duration 1 Semester
Hours per week 6.0
Overview
  • Classes:90 h
  • Individual/
    Group work:90 h

  • Workload:180 h
ECTS 6.0
Max. participants 0
Recommended semester 4
Frequency Annually (ss)
Lectures Leistungselektronik
Type Lecture
Nr. E+I256
Hours per week 4.0
Lecture contents

- tasks of power electronics
- components of power electronics
- AC power controllers and three-phase AC power controllers
- line-commutated power converters
- self-commutated power converters
- inverters
- control methods for converters and inverters
- introduction into space phasor theory

Grundlagen elektrischer Antriebe
Type Lecture
Nr. E+I257
Hours per week 2.0
Lecture contents

- basic principles of drive systems: loads, gearboxes, motors, converters, power systems
- basic principles of drive technology: mechanical quantities, energy flow consideration, torque generation, losses, efficiency of electrical machines, rotating field
- DC motors: structure, mode of operation, basic equations, operating behaviour, DC motors with permanent magnet excitation, series-wound DC machine, universal motor
- synchronous machines: design, mode of operation, basic equations, operating behaviour, single phase operation, comparison permanent / reluctance / hysteresis rotor - stepping motors: design and circuit, power supply and control, linear motors for small outputs


Electrical Drives II

Teaching methods Lecture/lab
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 7
Frequency Annually (ss)
Lectures Industrielle Antriebe
Type Lecture
Nr. E+I258
Hours per week 2.0
Labor Elektrische Antriebe und Leistungselektronik
Type Lab/studio
Nr. E+I259
Hours per week 2.0

Electrical Energy Production and Distribution 1

Teaching methods Lecture
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 3
Frequency Annually (ws)
Lectures Erzeugung und Verteilung elektrischer Energie 1
Type Lecture
Nr. E+I1721
Hours per week 4.0

Electrical Energy Production and Distribution 2

Teaching methods Lecture/lab
Duration 1 Semester
Hours per week 6.0
Overview
  • Classes:90 h
  • Individual/
    Group work:90 h

  • Workload:180 h
ECTS 6.0
Max. participants 0
Recommended semester 4
Frequency Annually (ss)
Lectures Erzeugung und Verteilung elektrischer Energie 2
Type Lecture
Nr. E+I1722
Hours per week 4.0
Labor Erzeugung und Verteilung elektrischer Energie
Type Lab
Nr. E+I1723
Hours per week 2.0

Electrical Energy Production and Distribution 3

Teaching methods Lecture
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:90 h
  • Individual/
    Group work:90 h

  • Workload:180 h
ECTS 5.0
Max. participants 0
Recommended semester 6
Frequency Annually (ws)
Lectures Erzeugung und Verteilung elektrischer Energie 3
Type Lecture
Nr. E+I701
Hours per week 4.0

Electricity Industry

Teaching methods Lecture
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 7
Frequency Annually (ws)
Lectures Smart Grids
Type Lecture
Nr. E+I1731
Hours per week 2.0
Elektrizitätswirtschaft
Type Lecture
Nr. E+I1730
Hours per week 2.0

Interdisciplinary Required Electives

Teaching methods Lecture
Duration 1 Semester
Hours per week 6.0
Overview
  • Classes:90 h
  • Individual/
    Group work:90 h

  • Workload:180 h
ECTS 6.0
Max. participants 0
Recommended semester 7
Frequency Annually (ws)
Lectures Fachübergreifende Wahlpflichtfächer
Type Lecture
Nr. E+I0705
Hours per week 6.0

Internship

Teaching methods internship
Duration 1 Semester
Hours per week 0.0
Overview
  • Classes:0 h
  • Individual/
    Group work:720 h

  • Workload:720 h
ECTS 24.0
Max. participants 0
Recommended semester 5
Frequency Annually (ws)
Lectures Betriebspraktikum
Type Internship
Nr. E+I1724

Object-Oriented Software Development

Teaching methods Lecture/lab
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:180 h
ECTS 5.0
Max. participants 0
Recommended semester 3
Frequency Annually (ws)
Lectures Objektorientierte Software-Entwicklung
Type Lecture
Nr. E+I233
Hours per week 2.0
Labor Objektorientierte Software-Entwicklung
Type Lab
Nr. E+I234
Hours per week 2.0

Power System Protection

Teaching methods Lecture/lab
Duration 1 Semester
Hours per week 5.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 6
Frequency Annually (ss)
Lectures Labor Netzschutztechnik
Type Lab
Nr. E+I1734
Hours per week 1.0
Netzschutztechnik
Type Lecture
Nr. E+I1725
Hours per week 4.0

Practice-Accompanying Course

Teaching methods Lecture/seminar
Duration 2 Semester
Hours per week 6.0
Overview
  • Classes:90 h
  • Individual/
    Group work:90 h

  • Workload:180 h
ECTS 6.0
Max. participants 0
Recommended semester 3-5
Frequency Annually (ws)
Lectures Betriebswirtschaftslehre
Type Lecture
Nr. E+I324
Hours per week 2.0
Betriebspraktische Wahlpflichtfächer
Type Lecture
Nr. E+I325
Hours per week 4.0
Seminar Projektmanagement
Type Seminar
Nr. E+I235
Hours per week 2.0

Renewable Energy Systems

Teaching methods Lecture/lab
Duration 1 Semester
Hours per week 6.0
Overview
  • Classes:90 h
  • Individual/
    Group work:90 h

  • Workload:180 h
ECTS 6.0
Max. participants 0
Recommended semester 6
Frequency Annually (ws)
Lectures Regenerative Energiesysteme
Type Lecture
Nr. E+I1728
Hours per week 4.0
Labor Regenerative Energiesysteme
Type Lab
Nr. E+I1729
Hours per week 2.0

Sensor Technology

Teaching methods Lecture
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 4
Frequency Annually (ss)
Lectures Labor Mess- und Sensortechnik
Type Lab
Nr. E+I261
Hours per week 2.0
Mess- und Sensortechnik
Type Lecture
Nr. E+I260
Hours per week 2.0
Lecture contents

Definition and characteristic of sensors: simple, integrated, intelligent ("smart sensor")

Overview on quantities to be measured and sesnor realizations:

  • Pressure: Piezoresistive, capazitive, methods for temperature compensation
  • Length and distance:
    • Induktive: Inducitve coil, LVDT, Phase synchrone demodulation(Lock-In)
    • Capacitive: Coating measurement
    • Optical: Triangulation, interferometry
    • Run time: RADAR and Sonar
  • Force:
    • Strain gauges and electrical conditioning circuits
  • Correlation measurement: Cross correlation, noise rejection, run time correlation

Measurement signal conditioning:

  • Measurement deviations
  • Least Squares Estimator
  • Sensor data fusion and weighted Least Squares

Signals, Systems and Control Circuits

Teaching methods Lecture
Duration 1 Semester
Hours per week 8.0
Overview
  • Classes:120 h
  • Individual/
    Group work:120 h

  • Workload:240 h
ECTS 8.0
Max. participants 0
Recommended semester 3
Frequency Annually (ws)
Lectures Regelungstechnik I
Type Lecture
Nr. E+I228
Hours per week 4.0
Lecture contents

• introduction to control engineering; Basic concepts and examples; Characteristic properties of control systems.
• Mathematical description of basic linear systems; differential equations, transfer functions, frequency response, Nyquist diagram, Bode diagram; frequency response of composite systems.
• requirements for control systems; selection and optimal adjustment of PID controllers in time and frequency domain; cascaded control; introduction to nonlinear control

Literature

Föllinger, O., Regelungstechnik, 12. Auflage, Berlin, VDE Verlag, 2016

Signale und Systeme
Type Lecture
Nr. E+I227
Hours per week 4.0
Lecture contents

1.Fourier transformation
• orthogonal and orthonormal functions, finite and infinite Fourier series
• determination of Fourier coefficients: minimization of error signal norms
• Gibbs phenomenon; Amplitude and phase spectrum
• transition to the Fourier transformation: amplitude density spectrum
• introduction of the Dirac impulse,
properties
• linearity, time shift, time scaling, Parseval's equation
• convolution of two time signals, graphical illustration
• system description: impulse response, convolution, frequency response.
2. Laplace Transformation
• introduction to the Laplace transform; properties and calculation rules
• calculation in time domain; inverse Laplace transform
• Laplace transforms of ordinary differential equations with constant coefficients.
• Calculations with impulse and step functions.
• transfer functions and frequency responses of linear continuous-time systems.
3. Z-transformation
• sampled-data systems; definition and concepts
• z-transform and inverse z-transform
solution of difference equations.
Fourier transformation
• orthogonal and orthonormal functions, finite and infinite Fourier series
• determination of Fourier coefficients: minimization of error signal norms
• Gibbs phenomenon; Amplitude and phase spectrum
• transition to the Fourier transformation: amplitude density spectrum
• introduction of the Dirac impulse,
properties
• linearity, time shift, time scaling, Parseval's equation
• convolution of two time signals, graphical illustration
• system description: impulse response, convolution, frequency response.
2. Laplace Transformation
• introduction to the Laplace transform; properties and calculation rules
• calculation in time domain; inverse Laplace transform
• Laplace transforms of ordinary differential equations with constant coefficients.
• Calculations with impulse and step functions.
• transfer functions and frequency responses of linear continuous-time systems.
3. Z-transformation
• sampled-data systems; definition and concepts
• z-transform and inverse z-transform
solution of difference equations.

Literature

Doetsch, G., Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, 6. Auflage, München, Wien, Oldenbourg Verlag, 1989
Föllinger, O., Laplace- und Fourier-Transformation, 10. Auflage, Berlin, Offenbach, VDE-Verlag, 2011
Werner, M., Signale und Systeme, Lehr- und Arbeitsbuch mit MATLAB-Übungen und Lösungen, 3. Auflage, Wiesbaden, Vieweg+Teubner, 2008


Simulation and Documentation

Teaching methods Lecture/seminar
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:90 h
  • Individual/
    Group work:60 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 3
Frequency Annually (ws)
Lectures Simulation
Type Internship
Nr. E+I225
Hours per week 2.0
Technische Dokumentation
Type Lecture
Nr. M+V603
Hours per week 2.0

Solid-State Physics

Teaching methods Lecture
Duration 1 Semester
Hours per week 4.0
Overview
  • Classes:60 h
  • Individual/
    Group work:90 h

  • Workload:150 h
ECTS 5.0
Max. participants 0
Recommended semester 3
Frequency Annually (ws)
Lectures Festkörperphysik
Type Lecture
Nr. E+I1720
Hours per week 4.0


← Back Save as Docx