Module Guide

Signals, Systems and Control Circuits

Teaching methods Lecture
Duration 1 Semester
Hours per week 8.0
Overview
  • Classes:120 h
  • Individual/
    Group work:120 h

  • Workload:240 h
ECTS 8.0
Max. participants 0
Recommended semester 3
Frequency Annually (ws)
Lectures Regelungstechnik I
Type Lecture
Nr. E+I228
Hours per week 4.0
Lecture contents

• introduction to control engineering; Basic concepts and examples; Characteristic properties of control systems.
• Mathematical description of basic linear systems; differential equations, transfer functions, frequency response, Nyquist diagram, Bode diagram; frequency response of composite systems.
• requirements for control systems; selection and optimal adjustment of PID controllers in time and frequency domain; cascaded control; introduction to nonlinear control

Literature

Föllinger, O., Regelungstechnik, 12. Auflage, Berlin, VDE Verlag, 2016

Signale und Systeme
Type Lecture
Nr. E+I227
Hours per week 4.0
Lecture contents

1.Fourier transformation
• orthogonal and orthonormal functions, finite and infinite Fourier series
• determination of Fourier coefficients: minimization of error signal norms
• Gibbs phenomenon; Amplitude and phase spectrum
• transition to the Fourier transformation: amplitude density spectrum
• introduction of the Dirac impulse,
properties
• linearity, time shift, time scaling, Parseval's equation
• convolution of two time signals, graphical illustration
• system description: impulse response, convolution, frequency response.
2. Laplace Transformation
• introduction to the Laplace transform; properties and calculation rules
• calculation in time domain; inverse Laplace transform
• Laplace transforms of ordinary differential equations with constant coefficients.
• Calculations with impulse and step functions.
• transfer functions and frequency responses of linear continuous-time systems.
3. Z-transformation
• sampled-data systems; definition and concepts
• z-transform and inverse z-transform
solution of difference equations.
Fourier transformation
• orthogonal and orthonormal functions, finite and infinite Fourier series
• determination of Fourier coefficients: minimization of error signal norms
• Gibbs phenomenon; Amplitude and phase spectrum
• transition to the Fourier transformation: amplitude density spectrum
• introduction of the Dirac impulse,
properties
• linearity, time shift, time scaling, Parseval's equation
• convolution of two time signals, graphical illustration
• system description: impulse response, convolution, frequency response.
2. Laplace Transformation
• introduction to the Laplace transform; properties and calculation rules
• calculation in time domain; inverse Laplace transform
• Laplace transforms of ordinary differential equations with constant coefficients.
• Calculations with impulse and step functions.
• transfer functions and frequency responses of linear continuous-time systems.
3. Z-transformation
• sampled-data systems; definition and concepts
• z-transform and inverse z-transform
solution of difference equations.

Literature

Doetsch, G., Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, 6. Auflage, München, Wien, Oldenbourg Verlag, 1989
Föllinger, O., Laplace- und Fourier-Transformation, 10. Auflage, Berlin, Offenbach, VDE-Verlag, 2011
Werner, M., Signale und Systeme, Lehr- und Arbeitsbuch mit MATLAB-Übungen und Lösungen, 3. Auflage, Wiesbaden, Vieweg+Teubner, 2008


← Back Save as Docx