Cardiovascular Device Technology and Rhythmology

Profile and objectives

The Laboratory for Cardiovascular Device Technology and Rhythmology (Cardiolab) is available to students of Medical Engineering and other interested parties for cardiovascular and electrophysiological laboratory experiments, project work and final theses and to researchers for research projects. The laboratory experiments carried out in small groups complement the medical technology lectures and seminars with extensive biomedical technology data of practical relevance. Research and Teaching Systems are available to students, staff, interested parties and researchers in the Laboratory for Cardiovascular Device Technology and Rhythmology.

Equipment

The Laboratory for Cardiovascular Device Technology and Rhythmology comprises Cardiovascular, Biosignal and Electrophysiology Research and Teaching Systems in combination with Heart Model, Cardiac Rhythm Simulator, Computer modeling and simulation, Pacemaker, Cardioverter/ Defibrillator, Cardiac Resynchronization Therapy (CRT) and hemodynamic and electrophysiological measuring stations with the following essential components:

  • Abbott EnSite Precision™ – 3D Cardiac Mapping System
  • BARD Lab DUO EP – Electrophysiological Monitoring System
  • BioRadio – Wireless physiology monitor incl. BioCapture and VivoSense Analysis Software
  • Biotronik Pacemaker/ Implantable Cardioverter Defibrillator (ICD), ICS3000 Programmer
  • Boston Scientific Pacemaker/ICD/CRT, Zoom Programmer, Latitute Telemonitoring
  • CorScience BT12 – Portable electrocardiographic measurement device incl. VM300 ECG analysis software
  • CST Studio Suite® Software for cardiac modeling and simulation
  • Digital Storage Oscilloscopes PCLab2000, Rohde&Schwarz HMO1024 Oscilloscope 4-channel analog
  • EPMap System, EP Perfect Navigation, electrophysiological 3D Heart Mapping System
  • Fleischacker MediConnect Pacemaker/ICD/CRT/CCM Database
  • Fluke Biomedical Impulse 7000DP defibrillator/external pacemaker tester
  • Fluke Biomedical ProSim 4 vital signs and ECG simulator
  • InterSim®II – Interactive heart rhythm simulator with ECG interface box and Offenburg pacemaker box
  • InterSim®III – Interactive cardiac rhythm simulator with ECG interface box and implant adapter box with IS1, IS4, DF1, DF4 connectors
  • Calibration & Adjustment Metlog ESTA II safety tester for STK of medical devices
  • Medis CardioScreen 1000 4TECT with ear sensor, CardioScreen 2000 with blood pressure cuff
  • Medis CardioVascular Lab – Hemodynamic Management and Monitoring
  • Medis TensoScreen CNAP Monitor, continuous and discontinuous arterial blood pressure
  • Medlab EG12000 ECG modules - 12 channel surface ECG monitoring
  • Medtronic Pacemaker/ICD/CRT, 9790 Programmer, CareLink Telemonitoring
  • National Instruments LabVIEW and MathWorks MATLAB / Simulink programming software
  • OriginPro – Data Analysis and Graphing Software for Statistical Analysis
  • Osypka Pace 50E esophageal stimulator, TO electrodes for left heart electrocardiography
  • Schwarzer Cardiotek EP-Tracer EP Recording System with Built-in Stimulator
  • Whaleteq MECG 2.0 – ECG database player for software and system validation
  • Zoll AED Pro - Automatic External Defibrillator, Physio-Control Lifepak 20e AED - Manually and Automatically operated External Defibrillator/Monitor

Practical training and exercises

In the Laboratory Digital Storage Oscilloscopes (MT2) technical and biomedical signals are analyzed on the Offenburg heart model and pacemaker as well as implant-based clinical cardiac arrhythmias, e.g. atrial flutter with a 2 to 1 atrial-ventricular transition.

The Biosignal Analysis Laboratory (MT6) offers experiments on the Biosignal Research and Teaching System for biosignal analysis in conventional and transesophageal electrocardiography, sinus rhythm, atrial flutter, atrial fibrillation, AV blocking, right ventricular stimulation, ventricular late potentials, His bundle potentials, pacemaker stimulation, ischemic and non-ischemic cardiomyopathy and cardiac rhythm simulation with the InterSim II rhythm simulator.

In the Cardiovascular Systems Laboratory (MT7), experiments on the Cardiovascular Research and Teaching System are carried out on parameters such as stroke volume, thoracic fluid, cardiac output, left ventricular ejection time, stroke volume index, prejection time, cardiac index, velocity index, ejection time index, acceleration index, Ejection time ratio, Heather Index, systolic time ratio, systolic time ratio index, O/C ratio, atrioventricular delay, interventricular delay, sinus node dysfunction, atrial fibrillation, left bundle branch block and therapy with cardiac resynchronization therapy, Boston CRT-D, Medtronic CRT-D and CRT-P were performed.

In the Laboratory QA/QM in Medical Technology (MT7) experiments with the MediConnect pacemaker/ICD/CRT/CCM database are offered for quality assurance and quality management in medical technology. In particular, the topics quality management system according to ISO 9001 and ISO 13485, medical device law, medical device operator regulation, safety of active medical devices, IEC 60601, safety and metrological control of medical devices, device briefing, initial instruction by manufacturers, instruction of employees, medical device representative guidelines/guidelines, recommendation levels and evidence levels for evidence-based diagnostics, therapy and cardiac device therapy are discussed in the course.

In the Master Laboratory Biosignal Analysis and Electrophysiology (MTM), experiments on the Electrophysiology Research and Teaching System for triggering, signal averaging, tachogram, FFT in transthoracic and transesophageal biosignals, cardiac micropotentials, Boston CRT-D and ICD, AV node conduction, atrial flutter, atrial fibrillation, spline interpolation, Fusion of electro- and impedance cardiographic biosignals, electromechanical latency, dilated cardiomyopathy, coronary heart disease, spectro temporal mapping, 3D vector loop, vector ECG for heart failure and pacemaker stimulation as well as intracardiac electrophysiological examinations with the EP-Tracer EP System are offered.

Topics for final theses

  • Modelling and simulation of cardiac arrhythmias, pacemakers, Electrophysiological Investigation, ablation, CRT, CCM, ... with the simulation software CST
  • Electrode development for ablation, stimulation and electrocardiography on the Schalk- heart rhythm model with the simulation software CST
  • Biosignal processing and biosignal analysis with e.g. LabVIEW, Origin, Bard Lab Duo, InterSim II and III, PM/ICD, CRT, ECG, IKG, EPU in time domain, spectral domain, wavelet, …
  • Cardiovascular, electrocardiographic monitoring with e.g. EP-Tracer, Bard Lab Duo, CardioScreen, Bioradio, EG12000, ...
  • Rhythmological quality assurance with Mediconnect, InterSim II, pacemaker, ICD, CRT, CCM, safety inspection, ...
  • Single and multi-channel stimulation with LabVIEW, NI MyRIO, ...
  • Ablation and navigation with EPMap SystemFurther development of existing laboratory experiments, design of new laboratory experiments

Publications

2019

M. Heinke, M. Schalk: Oesophageal Electrode Probe and Device for Cardiological Treatment and/or Diagnosis: Internationale Veröffentlichungsnummer  WO 2019/091991 A1, Internationales Aktenzeichen PCT/EP2018/080382, Internationales Anmeldedatum 07.11.2018, Internationales Veröffentlichungsdatum 16.05.2019

M. Heinke, M. Schalk: Ösophaguselektrodensonde und Vorrichtung zur kardiologischen Behandlung und/oder Diagnose. DE 10 2017 010 318 B3 2019.02.21, Anmeldetag: 07.11.2017, Veröffentlichungstag der Patenterteilung: 21.02.2019

M. Schleh, M. Heinke, J. Hörth: Esophageal electrode model and simulation of directed transesophageal electrical pacing of the spinal cord. Current Directions in Biomedical Engineering, Band 5, Heft 1, Seiten 89–92, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2019-0023, https://www.degruyter.com/view/j/cdbme.2019.5.issue-1/cdbme-2019-0023/cdbme-2019-0023.xml

M. Schleh, M. Heinke, J. Hörth: Abstract: Esophageal electrode model and simulation of directed transesophageal electrical pacing of the spinal cord, BMT 2019 - 53rd Conference of the German Society for Biomedical Engineering (DGBMT within VDE), Frankfurt am Main, September 25–26, Band: 64, Ausgabe / Heft: s2, S. 54 doi.org/10.1515/bmt-2019-6011

S. Wehsener, M. Heinke, R. Müssig, J. Hörth, S. Junk, S. Schrock: 3d print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein. Current Directions in Biomedical Engineering, Band 5, Heft 1, Seiten 235–238, ISSN (Online) 2364-5504, DOI: https://doi.org/10.1515/cdbme-2019-0060, https://www.degruyter.com/view/j/cdbme.2019.5.issue-1/cdbme-2019-0060/cdbme-2019-0060.xml

S. Wehsener, M. Heinke, R. Müssig, J. Hörth, S. Junk, S. Schrock: Abstract: 3D print of heart rhythm model with cryoballoon catheter ablation of pulmonary vein, BMT 2019 - 53rd Conference of the German Society for Biomedical Engineering (DGBMT within VDE), Frankfurt am Main, September 25–26, Band: 64, Ausgabe / Heft: s2, S.114, doi.org/10.1515/bmt-2019-6023

R. Müssig, M. Heinke, J. Hörth: Modellierung und Simulation elektrischer und thermischer Felder bei Vorhofflimmern und Kryoablation der Pulmonalvenen  Clin Res Cardiol 108, Suppl 1, April 2019, Beitrag P623, DOI https://doi.org/10.1007/s00392-019-01435-9

K. Ehret, M. Heinke, J. Hoerth, L. Schilling: Electromagnetic and thermal simulation of supraventricular tachycardia catheter ablation: EP Europace, Volume 21, Issue Supplement_2, March 2019, ii159, ISSN 1099-5129, EISSN 1532-2092 https://doi.org/10.1093/europace/euz093

R. Muessig, M. Heinke, J. Hoerth, L. Schilling: Electromagnetic and thermal simulation of cryoballoon catheter ablation with pulmonary vein isolation in atrial fibrillation. EP Europace, Volume 21, Issue Supplement_2, March 2019, ii605, ISSN 1099-5129, EISSN 1532-2092  https://doi.org/10.1093/europace/euz096

K. Goekues, M. Heinke, J. Hoerth, M. Schleh: Voltage field simulation of transesophageal left atrial pacing in combination with cardiac resynchronization therapy. EP Europace, Volume 21, Issue Supplement_2, March 2019, ii700, ISSN 1099-5129, EISSN 1532-2092  https://doi.org/10.1093/europace/euz096

K. Ehret, M. Heinke, J. Hörth: Simulation der Katheterablation supraventrikulärer Tachykardien. Forschung im Fokus 2019, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 22, 2019, 14 – 15

R. Müssig, M. Heinke, J. Hörth: Kryoablation von Vorhofflimmern. Forschung im Fokus 2019, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 22, 2019, 16 – 18

2018

2018

M. Heinke, G. Dannberg, T. Heinke, H. Kühnert: Electrical Right and Left Cardiac Atrioventricular and Left Atrial Delay in Cardiac Resynchronization Therapy Responder and Non-responder with Sinus Rhythm. L. Lhotska et al. (eds.), World Congress on Medical Physics and Biomedical Engineering 2018 pp. 139-142, IFMBE Proceedings 68/2. Springer, Singapore, doi.org/10.1007/978-981-10-9038-7_25

J. Tumampos, M. Heinke: Spectral Analysis of Signal Averaging Electrocardiography in Atrial and Ventricular Tachycardia Arrhythmias. L. Lhotska et al. (eds.), World Congress on Medical Physics and Biomedical Engineering 2018 pp. 143-147, IFMBE Proceedings 68/2. Springer, Singapore doi.org/10.1007/978-981-10-9038-7_26

M. Heinke, G. Dannberg, T. Heinke, H. Kühnert: Electrical Right and Left Cardiac Atrioventricular and Left Atrial in Cardiac Resynchronization Therapy Responder and Non-responder with Sinus Rhythm. World Congress on Medical Physics & Biomedical Engineering, June 3–8, 2018 Prague, Czech Republic, IUPESM Book of Abstracts, P 535

J. Tumampos, M. Heinke: Spectral Analysis of Signal Averaging Electrocardiography in Atrial and Ventricular Tachycardia Arrhythmias. World Congress on Medical Physics & Biomedical Engineering, June 3–8, 2018 Prague, Czech Republic, IUPESM Book of Abstracts, P 503

K. Ehret, M. Heinke, J. Hörth: Electrode Model and Simulation of Catheter Ablation of Supraventricular Tachycardia. Acta Scientific Medical Sciences 2.9 (2018): 19-22. DOI:https://actascientific.com/ASMS/pdf/ASMS-02-0143.pdf,https://opus.hs-offenburg.de/frontdoor/index/index/docId/2979

T. Roller, M. Heinke, J. Hörth: Pacing electrode modeling and simulation of cardiac contractility modulation. Current Directions in Biomedical Engineering 2018; 4(1): 551 – 554, DOI: doi.org/10.1515/cdbme-2018-1131, www.degruyter.com/downloadpdf/j/cdbme.2018.4.issue-1/cdbme-2018-1131/cdbme-2018-1131.pdf, opus.hs-offenburg.de/frontdoor/index/index/docId/2970

K. Göküs, M. Heinke, J. Hörth: Heart rhythm model for the simulation of electric fields in trans esophageal atrial pacing and cardiac resynchronization therapy. Current Directions in Biomedical Engineering 2018; 4(1): 443 – 445, DOI: doi.org/10.1515/cdbme-2018-0105, www.degruyter.com/downloadpdf/j/cdbme.2018.4.issue-1/cdbme-2018-0105/cdbme-2018-0105.pdf, opus.hs-offenburg.de/frontdoor/index/index/docId/2971

R. Müssig, M. Heinke, J. Hörth: Cryoballoon model and simulation of catheter ablation for pulmonary vein isolation in atrial fibrillation. Current Directions in Biomedical Engineering 2018; 4(1): 473 – 475, DOI: doi.org/10.1515/cdbme-2018-0113, www.degruyter.com/downloadpdf/j/cdbme.2018.4.issue-1/cdbme-2018-0113/cdbme-2018-0113.pdf, opus.hs-offenburg.de/frontdoor/index/index/docId/2969

M. Krämer, M. Heinke: Herzrhythmusmodell zur Simulation elektrischer und thermischer Felder bei kardialer Resynchronisationstherapie und Hochfrequenz Ablation. Clin Res Cardiol 107, Suppl 1, April 2018, Beitrag P442, DOI: doi.org/10.1007/s00392-018-1216-4, www.abstractserver.com/dgk2018/jt/abstracts/P442.HTM

M. Krämer, M. Heinke, J. Hörth: Electrical field simulations in cardiac resynchronization therapy and ablation. The Sixth International Conference on Biotechnology and Bioengineering (ICBB2017) 26–28 September 2017, Offenburg, Germany, Basic Clin Pharmacol Toxicol 2018; 122, S-P29, doi:10.1111/bcpt.12952, doi.org/10.1111/bcpt.12952

M. Schalk, M. Heinke, J. Hörth: Heart rhythm model for simulation in electrophysiological studies and ablation The Sixth International Conference on Biotechnology and Bioengineering (ICBB2017) 26–28 September 2017, Offenburg, Germany, Basic Clin Pharmacol Toxicol 2018; 122, doi:10.1111/bcpt.12952, doi.org/10.1111/bcpt.12952

E. Benke, M. Heinke, J. Hörth: 3D-Simulation elektrischer Stimulationsfelder bei Herzschrittmachern. Forschung im Fokus 2018, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 21, 2018, 21 – 22

J. Tumampos, M. Heinke, J. Hörth: Signalgemittelte Elektrokardiographie und spektrale Herzrhythmusanalyse. Forschung im Fokus 2018, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 21, 2018, 23 – 24

2017

2017

M. Krämer, M. Heinke, R. Echle, J. Hörth: Simulation of Electrical Fields in Cardiac Resynchronization Therapy and Temperature Spread in HF Ablation, Scholarena - SAJ Biotechnology 4:102, ISSN: 2375-6713, December 2017

M. Heinke, M. Schalk: Ösophaguselektrodensonden und Vorrichtung zur kardiologischen Behandlung und/oder Diagnose. Deutsches Patent- und Markenamt (DPMA), Deutsche Patentanmeldung Anmeldetag 7.11.2017

M. Heinke, G. Dannberg, T. Heinke, J. Hörth, H. Kühnert: Electrical interventricular delay and left ventricular delay in right ventricular pacemaker pacing before upgrading to cardiac resynchronization therapy. Current Directions in Biomedical Engineering 2017; 3(2): 245-248

M. Krämer, M. Heinke, J. Hörth: Electrical field simulations in cardiac resynchronization therapy and ablation. ICBB 2017 & 6th ICBB, 6th International Conference on Biotechnology and Bioengineering 2017 International Conference on Advances in Biomedicine and Biomedical Engineering, September 26th-28th, Offenburg Germany. Abstract Book, S-P29

M. Schalk, M. Heinke, J. Hörth: Heart rhythm model for Simulation in electrophysiological studies and ablation. ICBB 2017 & 6th ICBB, 6th International Conference on Biotechnology and Bioengineering 2017 Intenational Conference on Advances in Biomedicine and Biomedical Engineering, September 26th-28th, Offenburg Germany, Abstract-Book

M. Krämer, M. Heinke, R. Echle, J. Hörth: Simulation of electrical fields in cardiac resynchronization therapy and temperature spread in HF ablation. Abstracts - BMTMedPhys 2017 - Dresden, September m 10-13 • DOI 10.1515/bmt-2017-5032, Biomed. Eng.-Biomed. Tech. 2017; 62(s1): P 107, S155

J. Tumampos, M. Heinke, J. Hörth: Spectral Analysis of Signal averaging electrocardiography in atrial and ventricular tachyarrhythmias. Abstracts - BMTMedPhys 2017 - Dresden, September 10-13 • DOI 10.1515/bmt-2017-5032, Biomed. Eng-Biomed.Tech. 2017; 62(sl): P 257, S366

M. Schalk, M. Heinke, J. Hörth: Heart rhythm model and Simulation of electrophysiological studies and high-frequency ablations. Abstracts - BMTMedPhys 2017 - Dresden, September 10-13 • DOI 10.1515/bmt-2017-5032, Biomed. Eng.-Biomed. Tech. 2017; 62(sl): P 289, S394

M. Krämer, R. Echle, L. Schüssele, M. Heinke: E-Feld-Simulation bei CRT und Ablation. Forschung im Fokus 2017, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 20, 2017, 61-65

M. Schalk, R. Echle, L. Schüssele, M. Heinke: Herzrhythmusmodell zur Simulation von EPU und Ablation. Forschung im Fokus 2017, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 20, 2017 62-63

M. Heinke, G. Dannberg, H. Kühnert: Interventricular delay and left ventricular delay in right ventricular Pacemaker pacing before upgrading to beventricular pacing. Europace 19, Suppl. 3, 2017, iii314

M. Kraemer, R. Echle, M. Heinke: Simulation of electrical fields in cardiac resynchronization therapy and temperature spread in HF ablation. Europace 19, Suppl. 3, 2017, iii185

M. Schalk, M. Heinke, R. Echle: Heart rhythm model and Simulation of electrophysiological studies and high-frequency ablations. Europace 19, Suppl. 3, 2017, iii182

M.Heinke, H. Kühnert, G. Dannberg: Elektrisches interventrikuläres und linksventrikuläres Delay bei rechtsventrikulärer Stimulation vor Aufrüstung auf biventrikuläre Stimulation. Clin Res Cardiol 106, Suppl 1, April 2017, P1836

M. Schalk, M. Heinke, R. Echle: Heart rhythm model and simulation of electrophysiological studies and high-frequency ablations. Clin Res Cardiol 106, Suppl 1, April 2017, P1812

2016

2016

M. Heinke, H. Kühnert, T. Heinke, J. Tumampos, G. Dannberg: Left cardiac atrioventricular delay and inter-ventricular delay in cardiac resynchronization therapy responder and nonresponder. Current Directions in Biomedical Engineering; 2016; 2(1): 247-250, DOI 10.1515/cdbme-2016-0055

M. Heinke, H. Kühnert, G. Dannberg: Electrical interventricular delay to left ventricular delay ratio in atrial fibrillation cardiac resynchronization therapy responder and non-responder. Europace 18, Suppl.1, June 2016, 19-01, i164

M. Heinke, H. Kühnert, G. Dannberg: Intrakardiales und transösophageales elektrisches interventrikuläres Delay Verhältnis bei kardialer Resynchronisationstherapie. Clin Res Cardiol 105, Suppl 1, March 2016, V1218, DOI 10.1007/s00392-016-0967-z.

M. Heinke, G. Dannberg, H. Kühnert: Kardiale Desynchronisation bei Resynchronisationstherapie. Forschung im Fokus 2016, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 19, 2016, 12 – 14

P. Hoch, J. Tumampos, M. Heinke: Rhythmologisches Qualitätsmanagement mit MediConnect® & Latitude™ . Forschung im Fokus 2016, Institut für Angewandte Forschung Hochschule Offenburg, Ausgabe Nr. 19, 2016, 12 – 14

P. C. Takam, J. Tumampos, M. Gick, R. Kienzle, M. Heinke: Pacemaker and electrocardiography measurements in TAVI. Current Directions in Biomedical Engineering; 2016; 61 (s60), DOI 10.1515/bmt-2016-5005

N. Schuler, M. Heinke, J. Tumampos: Transthoracic impedance cardiography measurements with different monitoring devices. Current Directions in Biomedical Engineering; 2016; 61 (s65), DOI 10.1515/bmt-2016-5005